Metamath Proof Explorer


Theorem fviss

Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Assertion fviss ( I ‘ 𝐴 ) ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 id ( 𝑥 ∈ ( I ‘ 𝐴 ) → 𝑥 ∈ ( I ‘ 𝐴 ) )
2 elfvex ( 𝑥 ∈ ( I ‘ 𝐴 ) → 𝐴 ∈ V )
3 fvi ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 )
4 2 3 syl ( 𝑥 ∈ ( I ‘ 𝐴 ) → ( I ‘ 𝐴 ) = 𝐴 )
5 1 4 eleqtrd ( 𝑥 ∈ ( I ‘ 𝐴 ) → 𝑥𝐴 )
6 5 ssriv ( I ‘ 𝐴 ) ⊆ 𝐴