Metamath Proof Explorer


Theorem fvixp

Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis fvixp.1 ( 𝑥 = 𝐶𝐵 = 𝐷 )
Assertion fvixp ( ( 𝐹X 𝑥𝐴 𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐷 )

Proof

Step Hyp Ref Expression
1 fvixp.1 ( 𝑥 = 𝐶𝐵 = 𝐷 )
2 elixp2 ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
3 2 simp3bi ( 𝐹X 𝑥𝐴 𝐵 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 )
4 fveq2 ( 𝑥 = 𝐶 → ( 𝐹𝑥 ) = ( 𝐹𝐶 ) )
5 4 1 eleq12d ( 𝑥 = 𝐶 → ( ( 𝐹𝑥 ) ∈ 𝐵 ↔ ( 𝐹𝐶 ) ∈ 𝐷 ) )
6 5 rspccva ( ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐷 )
7 3 6 sylan ( ( 𝐹X 𝑥𝐴 𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐷 )