| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmpopr2d.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ) |
| 2 |
|
fvmpopr2d.2 |
⊢ ( 𝜑 → 𝑃 = 〈 𝑎 , 𝑏 〉 ) |
| 3 |
|
fvmpopr2d.3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
df-ov |
⊢ ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ‘ 〈 𝑎 , 𝑏 〉 ) |
| 5 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐹 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ) |
| 6 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑃 = 〈 𝑎 , 𝑏 〉 ) |
| 7 |
5 6
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑃 ) = ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ‘ 〈 𝑎 , 𝑏 〉 ) ) |
| 8 |
4 7
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑐 𝐶 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐶 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑑 |
| 12 |
|
nfcsb1v |
⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑎 ⦌ 𝐶 |
| 13 |
11 12
|
nfcsbw |
⊢ Ⅎ 𝑎 ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 |
| 14 |
|
nfcsb1v |
⊢ Ⅎ 𝑏 ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 |
| 15 |
|
csbeq1a |
⊢ ( 𝑎 = 𝑐 → 𝐶 = ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 16 |
|
csbeq1a |
⊢ ( 𝑏 = 𝑑 → ⦋ 𝑐 / 𝑎 ⦌ 𝐶 = ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 17 |
15 16
|
sylan9eq |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → 𝐶 = ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 18 |
9 10 13 14 17
|
cbvmpo |
⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 19 |
18
|
oveqi |
⊢ ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = ( 𝑎 ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) 𝑏 ) |
| 20 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) = ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) ) |
| 21 |
|
equcom |
⊢ ( 𝑎 = 𝑐 ↔ 𝑐 = 𝑎 ) |
| 22 |
|
equcom |
⊢ ( 𝑏 = 𝑑 ↔ 𝑑 = 𝑏 ) |
| 23 |
21 22
|
anbi12i |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ↔ ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) ) |
| 24 |
23 17
|
sylbir |
⊢ ( ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) → 𝐶 = ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 25 |
24
|
eqcomd |
⊢ ( ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) → ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 = 𝐶 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) ) → ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 = 𝐶 ) |
| 27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐴 ) |
| 28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 29 |
20 26 27 28 3
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) 𝑏 ) = 𝐶 ) |
| 30 |
19 29
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = 𝐶 ) |
| 31 |
8 30
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑃 ) = 𝐶 ) |