Metamath Proof Explorer


Theorem fvmpt2

Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010)

Ref Expression
Hypothesis mptrcl.1 𝐹 = ( 𝑥𝐴𝐵 )
Assertion fvmpt2 ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝐹𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 mptrcl.1 𝐹 = ( 𝑥𝐴𝐵 )
2 1 fvmpt2i ( 𝑥𝐴 → ( 𝐹𝑥 ) = ( I ‘ 𝐵 ) )
3 fvi ( 𝐵𝐶 → ( I ‘ 𝐵 ) = 𝐵 )
4 2 3 sylan9eq ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝐹𝑥 ) = 𝐵 )