Metamath Proof Explorer


Theorem fvmpt2f

Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017)

Ref Expression
Hypothesis fvmpt2f.0 𝑥 𝐴
Assertion fvmpt2f ( ( 𝑥𝐴𝐵𝐶 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fvmpt2f.0 𝑥 𝐴
2 csbeq1 ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝑥 / 𝑥 𝐵 )
3 csbid 𝑥 / 𝑥 𝐵 = 𝐵
4 2 3 eqtrdi ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝐵 )
5 nfcv 𝑦 𝐴
6 nfcv 𝑦 𝐵
7 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
8 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
9 1 5 6 7 8 cbvmptf ( 𝑥𝐴𝐵 ) = ( 𝑦𝐴 𝑦 / 𝑥 𝐵 )
10 4 9 fvmptg ( ( 𝑥𝐴𝐵𝐶 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )