Metamath Proof Explorer


Theorem fvmpt3

Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses fvmpt3.a ( 𝑥 = 𝐴𝐵 = 𝐶 )
fvmpt3.b 𝐹 = ( 𝑥𝐷𝐵 )
fvmpt3.c ( 𝑥𝐷𝐵𝑉 )
Assertion fvmpt3 ( 𝐴𝐷 → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvmpt3.a ( 𝑥 = 𝐴𝐵 = 𝐶 )
2 fvmpt3.b 𝐹 = ( 𝑥𝐷𝐵 )
3 fvmpt3.c ( 𝑥𝐷𝐵𝑉 )
4 1 eleq1d ( 𝑥 = 𝐴 → ( 𝐵𝑉𝐶𝑉 ) )
5 4 3 vtoclga ( 𝐴𝐷𝐶𝑉 )
6 1 2 fvmptg ( ( 𝐴𝐷𝐶𝑉 ) → ( 𝐹𝐴 ) = 𝐶 )
7 5 6 mpdan ( 𝐴𝐷 → ( 𝐹𝐴 ) = 𝐶 )