Metamath Proof Explorer


Theorem fvmptd

Description: Deduction version of fvmpt . (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 31-Aug-2015) (Proof shortened by AV, 29-Mar-2024)

Ref Expression
Hypotheses fvmptd.1 ( 𝜑𝐹 = ( 𝑥𝐷𝐵 ) )
fvmptd.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
fvmptd.3 ( 𝜑𝐴𝐷 )
fvmptd.4 ( 𝜑𝐶𝑉 )
Assertion fvmptd ( 𝜑 → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvmptd.1 ( 𝜑𝐹 = ( 𝑥𝐷𝐵 ) )
2 fvmptd.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
3 fvmptd.3 ( 𝜑𝐴𝐷 )
4 fvmptd.4 ( 𝜑𝐶𝑉 )
5 nfv 𝑥 𝜑
6 nfcv 𝑥 𝐴
7 nfcv 𝑥 𝐶
8 1 2 3 4 5 6 7 fvmptdf ( 𝜑 → ( 𝐹𝐴 ) = 𝐶 )