Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Functions fvmptd2f  
				
		 
		
			
		 
		Description:   Alternate deduction version of fvmpt  , suitable for iteration.
         (Contributed by Mario Carneiro , 7-Jan-2017)   (Proof shortened by AV , 19-Jan-2022) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						fvmptd2f.1 ⊢  ( 𝜑   →  𝐴   ∈  𝐷  )  
					
						fvmptd2f.2 ⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  𝐵   ∈  𝑉  )  
					
						fvmptd2f.3 ⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  ( ( 𝐹  ‘ 𝐴  )  =  𝐵   →  𝜓  ) )  
					
						fvmptd2f.4 ⊢  Ⅎ  𝑥  𝐹   
					
						fvmptd2f.5 ⊢  Ⅎ 𝑥  𝜓   
				
					Assertion 
					fvmptd2f ⊢   ( 𝜑   →  ( 𝐹   =  ( 𝑥   ∈  𝐷   ↦  𝐵  )  →  𝜓  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fvmptd2f.1 ⊢  ( 𝜑   →  𝐴   ∈  𝐷  )  
						
							2 
								
							 
							fvmptd2f.2 ⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  𝐵   ∈  𝑉  )  
						
							3 
								
							 
							fvmptd2f.3 ⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  ( ( 𝐹  ‘ 𝐴  )  =  𝐵   →  𝜓  ) )  
						
							4 
								
							 
							fvmptd2f.4 ⊢  Ⅎ  𝑥  𝐹   
						
							5 
								
							 
							fvmptd2f.5 ⊢  Ⅎ 𝑥  𝜓   
						
							6 
								
							 
							nfv ⊢  Ⅎ 𝑥  𝜑   
						
							7 
								1  2  3  4  5  6 
							 
							fvmptd3f ⊢  ( 𝜑   →  ( 𝐹   =  ( 𝑥   ∈  𝐷   ↦  𝐵  )  →  𝜓  ) )