Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvmptd2f
Metamath Proof Explorer
Description: Alternate deduction version of fvmpt , suitable for iteration.
(Contributed by Mario Carneiro , 7-Jan-2017) (Proof shortened by AV , 19-Jan-2022)
Ref
Expression
Hypotheses
fvmptd2f.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 )
fvmptd2f.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 )
fvmptd2f.3
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝜓 ) )
fvmptd2f.4
⊢ Ⅎ 𝑥 𝐹
fvmptd2f.5
⊢ Ⅎ 𝑥 𝜓
Assertion
fvmptd2f
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
fvmptd2f.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 )
2
fvmptd2f.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 )
3
fvmptd2f.3
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝜓 ) )
4
fvmptd2f.4
⊢ Ⅎ 𝑥 𝐹
5
fvmptd2f.5
⊢ Ⅎ 𝑥 𝜓
6
nfv
⊢ Ⅎ 𝑥 𝜑
7
1 2 3 4 5 6
fvmptd3f
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) )