Metamath Proof Explorer


Theorem fvmptd2f

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017) (Proof shortened by AV, 19-Jan-2022)

Ref Expression
Hypotheses fvmptd2f.1 ( 𝜑𝐴𝐷 )
fvmptd2f.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝑉 )
fvmptd2f.3 ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝐹𝐴 ) = 𝐵𝜓 ) )
fvmptd2f.4 𝑥 𝐹
fvmptd2f.5 𝑥 𝜓
Assertion fvmptd2f ( 𝜑 → ( 𝐹 = ( 𝑥𝐷𝐵 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 fvmptd2f.1 ( 𝜑𝐴𝐷 )
2 fvmptd2f.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝑉 )
3 fvmptd2f.3 ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝐹𝐴 ) = 𝐵𝜓 ) )
4 fvmptd2f.4 𝑥 𝐹
5 fvmptd2f.5 𝑥 𝜓
6 nfv 𝑥 𝜑
7 1 2 3 4 5 6 fvmptd3f ( 𝜑 → ( 𝐹 = ( 𝑥𝐷𝐵 ) → 𝜓 ) )