Metamath Proof Explorer
Description: Deduction version of fvmpt . (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
fvmptd3.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
|
|
fvmptd3.2 |
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
|
|
fvmptd3.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
|
|
fvmptd3.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
|
Assertion |
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptd3.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
2 |
|
fvmptd3.2 |
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
3 |
|
fvmptd3.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
4 |
|
fvmptd3.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
2 1
|
fvmptg |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |