Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptd2f.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
2 |
|
fvmptd2f.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
fvmptd2f.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝜓 ) ) |
4 |
|
fvmptd3f.4 |
⊢ Ⅎ 𝑥 𝐹 |
5 |
|
fvmptd3f.5 |
⊢ Ⅎ 𝑥 𝜓 |
6 |
|
fvmptd3f.6 |
⊢ Ⅎ 𝑥 𝜑 |
7 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
8 |
4 7
|
nfeq |
⊢ Ⅎ 𝑥 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
9 |
8 5
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) |
10 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
11 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
12 |
10 11
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
13 |
|
fveq1 |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐴 ∈ 𝐷 ) |
17 |
14 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝐷 ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
19 |
18
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
20 |
17 2 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
21 |
15 20
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐵 ) |
22 |
21
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) |
23 |
22 3
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) → 𝜓 ) ) |
24 |
13 23
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |
25 |
6 9 12 24
|
exlimdd |
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |