| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptd2f.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 2 |
|
fvmptd2f.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
fvmptd2f.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝜓 ) ) |
| 4 |
|
fvmptd3f.4 |
⊢ Ⅎ 𝑥 𝐹 |
| 5 |
|
fvmptd3f.5 |
⊢ Ⅎ 𝑥 𝜓 |
| 6 |
|
fvmptd3f.6 |
⊢ Ⅎ 𝑥 𝜑 |
| 7 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 8 |
4 7
|
nfeq |
⊢ Ⅎ 𝑥 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 9 |
8 5
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) |
| 10 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 11 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 13 |
|
fveq1 |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐴 ∈ 𝐷 ) |
| 17 |
14 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝐷 ) |
| 18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 19 |
18
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 20 |
17 2 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 21 |
15 20
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐵 ) |
| 22 |
21
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) |
| 23 |
22 3
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) → 𝜓 ) ) |
| 24 |
13 23
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |
| 25 |
6 9 12 24
|
exlimdd |
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |