Metamath Proof Explorer


Theorem fvmptd3f

Description: Alternate deduction version of fvmpt with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022)

Ref Expression
Hypotheses fvmptd2f.1 ( 𝜑𝐴𝐷 )
fvmptd2f.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝑉 )
fvmptd2f.3 ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝐹𝐴 ) = 𝐵𝜓 ) )
fvmptd3f.4 𝑥 𝐹
fvmptd3f.5 𝑥 𝜓
fvmptd3f.6 𝑥 𝜑
Assertion fvmptd3f ( 𝜑 → ( 𝐹 = ( 𝑥𝐷𝐵 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 fvmptd2f.1 ( 𝜑𝐴𝐷 )
2 fvmptd2f.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝑉 )
3 fvmptd2f.3 ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝐹𝐴 ) = 𝐵𝜓 ) )
4 fvmptd3f.4 𝑥 𝐹
5 fvmptd3f.5 𝑥 𝜓
6 fvmptd3f.6 𝑥 𝜑
7 nfmpt1 𝑥 ( 𝑥𝐷𝐵 )
8 4 7 nfeq 𝑥 𝐹 = ( 𝑥𝐷𝐵 )
9 8 5 nfim 𝑥 ( 𝐹 = ( 𝑥𝐷𝐵 ) → 𝜓 )
10 1 elexd ( 𝜑𝐴 ∈ V )
11 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
12 10 11 sylib ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
13 fveq1 ( 𝐹 = ( 𝑥𝐷𝐵 ) → ( 𝐹𝐴 ) = ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) )
14 simpr ( ( 𝜑𝑥 = 𝐴 ) → 𝑥 = 𝐴 )
15 14 fveq2d ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝑥𝐷𝐵 ) ‘ 𝑥 ) = ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) )
16 1 adantr ( ( 𝜑𝑥 = 𝐴 ) → 𝐴𝐷 )
17 14 16 eqeltrd ( ( 𝜑𝑥 = 𝐴 ) → 𝑥𝐷 )
18 eqid ( 𝑥𝐷𝐵 ) = ( 𝑥𝐷𝐵 )
19 18 fvmpt2 ( ( 𝑥𝐷𝐵𝑉 ) → ( ( 𝑥𝐷𝐵 ) ‘ 𝑥 ) = 𝐵 )
20 17 2 19 syl2anc ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝑥𝐷𝐵 ) ‘ 𝑥 ) = 𝐵 )
21 15 20 eqtr3d ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) = 𝐵 )
22 21 eqeq2d ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝐹𝐴 ) = ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) ↔ ( 𝐹𝐴 ) = 𝐵 ) )
23 22 3 sylbid ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝐹𝐴 ) = ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) → 𝜓 ) )
24 13 23 syl5 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝐹 = ( 𝑥𝐷𝐵 ) → 𝜓 ) )
25 6 9 12 24 exlimdd ( 𝜑 → ( 𝐹 = ( 𝑥𝐷𝐵 ) → 𝜓 ) )