| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptdv2.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 2 |  | fvmptdv2.2 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | fvmptdv2.3 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝐵  =  𝐶 ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  𝐵 )  =  ( 𝑥  ∈  𝐷  ↦  𝐵 ) ) | 
						
							| 5 | 1 | elexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 6 |  | isset | ⊢ ( 𝐴  ∈  V  ↔  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 8 | 2 | elexd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 9 | 3 8 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝐶  ∈  V ) | 
						
							| 10 | 7 9 | exlimddv | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 11 | 4 3 1 10 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐷  ↦  𝐵 ) ‘ 𝐴 )  =  𝐶 ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝐹  =  ( 𝑥  ∈  𝐷  ↦  𝐵 )  →  ( 𝐹 ‘ 𝐴 )  =  ( ( 𝑥  ∈  𝐷  ↦  𝐵 ) ‘ 𝐴 ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝐹  =  ( 𝑥  ∈  𝐷  ↦  𝐵 )  →  ( ( 𝐹 ‘ 𝐴 )  =  𝐶  ↔  ( ( 𝑥  ∈  𝐷  ↦  𝐵 ) ‘ 𝐴 )  =  𝐶 ) ) | 
						
							| 14 | 11 13 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝐹  =  ( 𝑥  ∈  𝐷  ↦  𝐵 )  →  ( 𝐹 ‘ 𝐴 )  =  𝐶 ) ) |