Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptdv2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
2 |
|
fvmptdv2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
fvmptdv2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) |
5 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
6 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
7 |
5 6
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
8 |
2
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ V ) |
9 |
3 8
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 ∈ V ) |
10 |
7 9
|
exlimddv |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
11 |
4 3 1 10
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
12 |
|
fveq1 |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) |
14 |
11 13
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |