Metamath Proof Explorer


Theorem fvmptdv2

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses fvmptdv2.1 ( 𝜑𝐴𝐷 )
fvmptdv2.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝑉 )
fvmptdv2.3 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
Assertion fvmptdv2 ( 𝜑 → ( 𝐹 = ( 𝑥𝐷𝐵 ) → ( 𝐹𝐴 ) = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fvmptdv2.1 ( 𝜑𝐴𝐷 )
2 fvmptdv2.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝑉 )
3 fvmptdv2.3 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
4 eqidd ( 𝜑 → ( 𝑥𝐷𝐵 ) = ( 𝑥𝐷𝐵 ) )
5 1 elexd ( 𝜑𝐴 ∈ V )
6 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
7 5 6 sylib ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
8 2 elexd ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 ∈ V )
9 3 8 eqeltrrd ( ( 𝜑𝑥 = 𝐴 ) → 𝐶 ∈ V )
10 7 9 exlimddv ( 𝜑𝐶 ∈ V )
11 4 3 1 10 fvmptd ( 𝜑 → ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) = 𝐶 )
12 fveq1 ( 𝐹 = ( 𝑥𝐷𝐵 ) → ( 𝐹𝐴 ) = ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) )
13 12 eqeq1d ( 𝐹 = ( 𝑥𝐷𝐵 ) → ( ( 𝐹𝐴 ) = 𝐶 ↔ ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) = 𝐶 ) )
14 11 13 syl5ibrcom ( 𝜑 → ( 𝐹 = ( 𝑥𝐷𝐵 ) → ( 𝐹𝐴 ) = 𝐶 ) )