Metamath Proof Explorer


Theorem fvmptelcdmf

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fvmptelcdmf.a 𝑥 𝐴
fvmptelcdmf.c 𝑥 𝐶
fvmptelcdmf.f ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
Assertion fvmptelcdmf ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 fvmptelcdmf.a 𝑥 𝐴
2 fvmptelcdmf.c 𝑥 𝐶
3 fvmptelcdmf.f ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 2 4 fmptff ( ∀ 𝑥𝐴 𝐵𝐶 ↔ ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
6 3 5 sylibr ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
7 6 r19.21bi ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )