Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmptelcdmf.a | ⊢ Ⅎ 𝑥 𝐴 | |
fvmptelcdmf.c | ⊢ Ⅎ 𝑥 𝐶 | ||
fvmptelcdmf.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) | ||
Assertion | fvmptelcdmf | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelcdmf.a | ⊢ Ⅎ 𝑥 𝐴 | |
2 | fvmptelcdmf.c | ⊢ Ⅎ 𝑥 𝐶 | |
3 | fvmptelcdmf.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) | |
4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
5 | 1 2 4 | fmptff | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
6 | 3 5 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) |
7 | 6 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |