Metamath Proof Explorer


Theorem fvmptelrn

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis fvmptelrn.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
Assertion fvmptelrn ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 fvmptelrn.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
2 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
3 2 fmpt ( ∀ 𝑥𝐴 𝐵𝐶 ↔ ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
4 1 3 sylibr ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
5 4 r19.21bi ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )