| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptex.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 2 |
|
fvmptex.2 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( I ‘ 𝐵 ) ) |
| 3 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐶 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐶 / 𝑥 ⦌ 𝐵 ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 6 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 7 |
4 5 6
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 8 |
1 7
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 9 |
3 8
|
fvmpti |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) = ( I ‘ ⦋ 𝐶 / 𝑥 ⦌ 𝐵 ) ) |
| 10 |
3
|
fveq2d |
⊢ ( 𝑦 = 𝐶 → ( I ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( I ‘ ⦋ 𝐶 / 𝑥 ⦌ 𝐵 ) ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑦 ( I ‘ 𝐵 ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 I |
| 13 |
12 5
|
nffv |
⊢ Ⅎ 𝑥 ( I ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 14 |
6
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( I ‘ 𝐵 ) = ( I ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 15 |
11 13 14
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( I ‘ 𝐵 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( I ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 16 |
2 15
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ ( I ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 17 |
|
fvex |
⊢ ( I ‘ ⦋ 𝐶 / 𝑥 ⦌ 𝐵 ) ∈ V |
| 18 |
10 16 17
|
fvmpt |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐺 ‘ 𝐶 ) = ( I ‘ ⦋ 𝐶 / 𝑥 ⦌ 𝐵 ) ) |
| 19 |
9 18
|
eqtr4d |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) ) |
| 20 |
1
|
dmmptss |
⊢ dom 𝐹 ⊆ 𝐴 |
| 21 |
20
|
sseli |
⊢ ( 𝐶 ∈ dom 𝐹 → 𝐶 ∈ 𝐴 ) |
| 22 |
|
ndmfv |
⊢ ( ¬ 𝐶 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐶 ) = ∅ ) |
| 23 |
21 22
|
nsyl5 |
⊢ ( ¬ 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) = ∅ ) |
| 24 |
|
fvex |
⊢ ( I ‘ 𝐵 ) ∈ V |
| 25 |
24 2
|
dmmpti |
⊢ dom 𝐺 = 𝐴 |
| 26 |
25
|
eleq2i |
⊢ ( 𝐶 ∈ dom 𝐺 ↔ 𝐶 ∈ 𝐴 ) |
| 27 |
|
ndmfv |
⊢ ( ¬ 𝐶 ∈ dom 𝐺 → ( 𝐺 ‘ 𝐶 ) = ∅ ) |
| 28 |
26 27
|
sylnbir |
⊢ ( ¬ 𝐶 ∈ 𝐴 → ( 𝐺 ‘ 𝐶 ) = ∅ ) |
| 29 |
23 28
|
eqtr4d |
⊢ ( ¬ 𝐶 ∈ 𝐴 → ( 𝐹 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) ) |
| 30 |
19 29
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) |