| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
fvmptf.2 |
⊢ Ⅎ 𝑥 𝐶 |
| 3 |
|
fvmptf.3 |
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
| 4 |
|
fvmptf.4 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 5 |
2
|
nfel1 |
⊢ Ⅎ 𝑥 𝐶 ∈ V |
| 6 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 7 |
4 6
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 8 |
7 1
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) |
| 9 |
8 2
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) = 𝐶 |
| 10 |
5 9
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 11 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V ↔ 𝐶 ∈ V ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 13 |
12 3
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ V → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ↔ ( 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) ) |
| 15 |
4
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 16 |
15
|
ex |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝐵 ∈ V → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
| 17 |
1 10 14 16
|
vtoclgaf |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| 18 |
|
elex |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) |
| 19 |
17 18
|
impel |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |