| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptg.1 |
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
| 2 |
|
fvmptg.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 3 |
1 2
|
fvmptg |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 4 |
|
fvi |
⊢ ( 𝐶 ∈ V → ( I ‘ 𝐶 ) = 𝐶 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) → ( I ‘ 𝐶 ) = 𝐶 ) |
| 6 |
3 5
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 7 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V ↔ 𝐶 ∈ V ) ) |
| 8 |
2
|
dmmpt |
⊢ dom 𝐹 = { 𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V } |
| 9 |
7 8
|
elrab2 |
⊢ ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) |
| 10 |
9
|
baib |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V ) ) |
| 11 |
10
|
notbid |
⊢ ( 𝐴 ∈ 𝐷 → ( ¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V ) ) |
| 12 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 13 |
11 12
|
biimtrrdi |
⊢ ( 𝐴 ∈ 𝐷 → ( ¬ 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 15 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( I ‘ 𝐶 ) = ∅ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( I ‘ 𝐶 ) = ∅ ) |
| 17 |
14 16
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 18 |
6 17
|
pm2.61dan |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |