Metamath Proof Explorer


Theorem fvmptmap

Description: Special case of fvmpt for operator theorems. (Contributed by NM, 27-Nov-2007)

Ref Expression
Hypotheses fvmptmap.1 𝐶 ∈ V
fvmptmap.2 𝐷 ∈ V
fvmptmap.3 𝑅 ∈ V
fvmptmap.4 ( 𝑥 = 𝐴𝐵 = 𝐶 )
fvmptmap.5 𝐹 = ( 𝑥 ∈ ( 𝑅m 𝐷 ) ↦ 𝐵 )
Assertion fvmptmap ( 𝐴 : 𝐷𝑅 → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvmptmap.1 𝐶 ∈ V
2 fvmptmap.2 𝐷 ∈ V
3 fvmptmap.3 𝑅 ∈ V
4 fvmptmap.4 ( 𝑥 = 𝐴𝐵 = 𝐶 )
5 fvmptmap.5 𝐹 = ( 𝑥 ∈ ( 𝑅m 𝐷 ) ↦ 𝐵 )
6 3 2 elmap ( 𝐴 ∈ ( 𝑅m 𝐷 ) ↔ 𝐴 : 𝐷𝑅 )
7 4 5 1 fvmpt ( 𝐴 ∈ ( 𝑅m 𝐷 ) → ( 𝐹𝐴 ) = 𝐶 )
8 6 7 sylbir ( 𝐴 : 𝐷𝑅 → ( 𝐹𝐴 ) = 𝐶 )