Description: Special case of fvmpt for operator theorems. (Contributed by NM, 27-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptmap.1 | ⊢ 𝐶 ∈ V | |
| fvmptmap.2 | ⊢ 𝐷 ∈ V | ||
| fvmptmap.3 | ⊢ 𝑅 ∈ V | ||
| fvmptmap.4 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
| fvmptmap.5 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝑅 ↑m 𝐷 ) ↦ 𝐵 ) | ||
| Assertion | fvmptmap | ⊢ ( 𝐴 : 𝐷 ⟶ 𝑅 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptmap.1 | ⊢ 𝐶 ∈ V | |
| 2 | fvmptmap.2 | ⊢ 𝐷 ∈ V | |
| 3 | fvmptmap.3 | ⊢ 𝑅 ∈ V | |
| 4 | fvmptmap.4 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 5 | fvmptmap.5 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝑅 ↑m 𝐷 ) ↦ 𝐵 ) | |
| 6 | 3 2 | elmap | ⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝐷 ) ↔ 𝐴 : 𝐷 ⟶ 𝑅 ) |
| 7 | 4 5 1 | fvmpt | ⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝐷 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 8 | 6 7 | sylbir | ⊢ ( 𝐴 : 𝐷 ⟶ 𝑅 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |