Metamath Proof Explorer


Theorem fvmptopab

Description: The function value of a mapping M to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function F restricted by the condition ps . (Contributed by AV, 31-Jan-2021) (Revised by AV, 29-Oct-2021) Add disjoint variable condition on F , x , y to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024)

Ref Expression
Hypotheses fvmptopab.1 ( 𝑧 = 𝑍 → ( 𝜑𝜓 ) )
fvmptopab.m 𝑀 = ( 𝑧 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑧 ) 𝑦𝜑 ) } )
Assertion fvmptopab ( 𝑀𝑍 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) }

Proof

Step Hyp Ref Expression
1 fvmptopab.1 ( 𝑧 = 𝑍 → ( 𝜑𝜓 ) )
2 fvmptopab.m 𝑀 = ( 𝑧 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑧 ) 𝑦𝜑 ) } )
3 fveq2 ( 𝑧 = 𝑍 → ( 𝐹𝑧 ) = ( 𝐹𝑍 ) )
4 3 breqd ( 𝑧 = 𝑍 → ( 𝑥 ( 𝐹𝑧 ) 𝑦𝑥 ( 𝐹𝑍 ) 𝑦 ) )
5 4 1 anbi12d ( 𝑧 = 𝑍 → ( ( 𝑥 ( 𝐹𝑧 ) 𝑦𝜑 ) ↔ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) ) )
6 5 opabbidv ( 𝑧 = 𝑍 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑧 ) 𝑦𝜑 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } )
7 opabresex2 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } ∈ V
8 6 2 7 fvmpt ( 𝑍 ∈ V → ( 𝑀𝑍 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } )
9 fvprc ( ¬ 𝑍 ∈ V → ( 𝑀𝑍 ) = ∅ )
10 elopabran ( 𝑧 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } → 𝑧 ∈ ( 𝐹𝑍 ) )
11 10 ssriv { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } ⊆ ( 𝐹𝑍 )
12 fvprc ( ¬ 𝑍 ∈ V → ( 𝐹𝑍 ) = ∅ )
13 11 12 sseqtrid ( ¬ 𝑍 ∈ V → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } ⊆ ∅ )
14 ss0 ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } ⊆ ∅ → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } = ∅ )
15 13 14 syl ( ¬ 𝑍 ∈ V → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } = ∅ )
16 9 15 eqtr4d ( ¬ 𝑍 ∈ V → ( 𝑀𝑍 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) } )
17 8 16 pm2.61i ( 𝑀𝑍 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ( 𝐹𝑍 ) 𝑦𝜓 ) }