Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptopab.1 |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝜒 ↔ 𝜓 ) ) |
2 |
|
fvmptopab.2 |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 } ∈ V ) |
3 |
|
fvmptopab.3 |
⊢ 𝑀 = ( 𝑧 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜒 ) } ) |
4 |
|
fveq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑍 ) ) |
5 |
4
|
breqd |
⊢ ( 𝑧 = 𝑍 → ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ↔ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ↔ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) ) |
7 |
1
|
adantll |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑧 = 𝑍 ) → ( 𝜒 ↔ 𝜓 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑧 = 𝑍 ) → ( ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜒 ) ↔ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) ) ) |
9 |
8
|
opabbidv |
⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑧 = 𝑍 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜒 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |
10 |
|
simpl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝑍 ∈ V ) |
11 |
|
id |
⊢ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 → 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) |
12 |
11
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 → 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) |
13 |
2
|
adantl |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 } ∈ V ) |
14 |
|
opabbrex |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 → 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 } ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ∈ V ) |
15 |
12 13 14
|
sylancr |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ∈ V ) |
16 |
3 9 10 15
|
fvmptd2 |
⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |
17 |
16
|
ex |
⊢ ( 𝑍 ∈ V → ( 𝜑 → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) ) |
18 |
|
fvprc |
⊢ ( ¬ 𝑍 ∈ V → ( 𝑀 ‘ 𝑍 ) = ∅ ) |
19 |
|
br0 |
⊢ ¬ 𝑥 ∅ 𝑦 |
20 |
|
fvprc |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 ‘ 𝑍 ) = ∅ ) |
21 |
20
|
breqd |
⊢ ( ¬ 𝑍 ∈ V → ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ↔ 𝑥 ∅ 𝑦 ) ) |
22 |
19 21
|
mtbiri |
⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) |
23 |
22
|
intnanrd |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) ) |
24 |
23
|
alrimivv |
⊢ ( ¬ 𝑍 ∈ V → ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) ) |
25 |
|
opab0 |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ¬ 𝑍 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } = ∅ ) |
27 |
18 26
|
eqtr4d |
⊢ ( ¬ 𝑍 ∈ V → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |
28 |
27
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( 𝜑 → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) ) |
29 |
17 28
|
pm2.61i |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |