Metamath Proof Explorer


Theorem fvmptrabfv

Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022)

Ref Expression
Hypotheses fvmptrabfv.f 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ ( 𝐺𝑥 ) ∣ 𝜑 } )
fvmptrabfv.r ( 𝑥 = 𝑋 → ( 𝜑𝜓 ) )
Assertion fvmptrabfv ( 𝐹𝑋 ) = { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 }

Proof

Step Hyp Ref Expression
1 fvmptrabfv.f 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ ( 𝐺𝑥 ) ∣ 𝜑 } )
2 fvmptrabfv.r ( 𝑥 = 𝑋 → ( 𝜑𝜓 ) )
3 fveq2 ( 𝑥 = 𝑋 → ( 𝐺𝑥 ) = ( 𝐺𝑋 ) )
4 3 2 rabeqbidv ( 𝑥 = 𝑋 → { 𝑦 ∈ ( 𝐺𝑥 ) ∣ 𝜑 } = { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 } )
5 fvex ( 𝐺𝑋 ) ∈ V
6 5 rabex { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 } ∈ V
7 4 1 6 fvmpt ( 𝑋 ∈ V → ( 𝐹𝑋 ) = { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 } )
8 fvprc ( ¬ 𝑋 ∈ V → ( 𝐹𝑋 ) = ∅ )
9 fvprc ( ¬ 𝑋 ∈ V → ( 𝐺𝑋 ) = ∅ )
10 9 rabeqdv ( ¬ 𝑋 ∈ V → { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 } = { 𝑦 ∈ ∅ ∣ 𝜓 } )
11 rab0 { 𝑦 ∈ ∅ ∣ 𝜓 } = ∅
12 10 11 eqtr2di ( ¬ 𝑋 ∈ V → ∅ = { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 } )
13 8 12 eqtrd ( ¬ 𝑋 ∈ V → ( 𝐹𝑋 ) = { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 } )
14 7 13 pm2.61i ( 𝐹𝑋 ) = { 𝑦 ∈ ( 𝐺𝑋 ) ∣ 𝜓 }