Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptrabfv.f |
⊢ 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ∣ 𝜑 } ) |
2 |
|
fvmptrabfv.r |
⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
4 |
3 2
|
rabeqbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ∣ 𝜑 } = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
5 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑋 ) ∈ V |
6 |
5
|
rabex |
⊢ { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ∈ V |
7 |
4 1 6
|
fvmpt |
⊢ ( 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
8 |
|
fvprc |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
9 |
|
fvprc |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
10 |
9
|
rabeqdv |
⊢ ( ¬ 𝑋 ∈ V → { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } = { 𝑦 ∈ ∅ ∣ 𝜓 } ) |
11 |
|
rab0 |
⊢ { 𝑦 ∈ ∅ ∣ 𝜓 } = ∅ |
12 |
10 11
|
eqtr2di |
⊢ ( ¬ 𝑋 ∈ V → ∅ = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
13 |
8 12
|
eqtrd |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
14 |
7 13
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } |