Step |
Hyp |
Ref |
Expression |
1 |
|
mptrcl.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
1
|
dmmptss |
⊢ dom 𝐹 ⊆ 𝐴 |
3 |
2
|
sseli |
⊢ ( 𝐷 ∈ dom 𝐹 → 𝐷 ∈ 𝐴 ) |
4 |
|
fveq2 |
⊢ ( 𝑦 = 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐷 ) ) |
5 |
4
|
sseq1d |
⊢ ( 𝑦 = 𝐷 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ↔ ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑦 = 𝐷 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) ) ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
8 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
9 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
1 9
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
11 |
10 7
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
13 |
11 12
|
nfss |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 |
14 |
8 13
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
16 |
15
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ) ) |
18 |
1
|
dmmpt |
⊢ dom 𝐹 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
19 |
18
|
rabeq2i |
⊢ ( 𝑥 ∈ dom 𝐹 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) ) |
20 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
21 |
|
eqimss |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝐵 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
23 |
19 22
|
sylbi |
⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
24 |
|
ndmfv |
⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
25 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
26 |
24 25
|
eqsstrdi |
⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
27 |
23 26
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 |
28 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶 ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
30 |
27 29
|
sstrid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ) |
31 |
30
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ) ) |
32 |
7 14 17 31
|
vtoclgaf |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ) |
33 |
6 32
|
vtoclga |
⊢ ( 𝐷 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) ) |
34 |
33
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
35 |
3 34
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ 𝐷 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
36 |
|
ndmfv |
⊢ ( ¬ 𝐷 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐷 ) = ∅ ) |
37 |
36
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐷 ) = ∅ ) |
38 |
|
0ss |
⊢ ∅ ⊆ 𝐶 |
39 |
37 38
|
eqsstrdi |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
40 |
35 39
|
pm2.61dan |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |