Metamath Proof Explorer


Theorem fvmptss

Description: If all the values of the mapping are subsets of a class C , then so is any evaluation of the mapping, even if D is not in the base set A . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis mptrcl.1 𝐹 = ( 𝑥𝐴𝐵 )
Assertion fvmptss ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝐷 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 mptrcl.1 𝐹 = ( 𝑥𝐴𝐵 )
2 1 dmmptss dom 𝐹𝐴
3 2 sseli ( 𝐷 ∈ dom 𝐹𝐷𝐴 )
4 fveq2 ( 𝑦 = 𝐷 → ( 𝐹𝑦 ) = ( 𝐹𝐷 ) )
5 4 sseq1d ( 𝑦 = 𝐷 → ( ( 𝐹𝑦 ) ⊆ 𝐶 ↔ ( 𝐹𝐷 ) ⊆ 𝐶 ) )
6 5 imbi2d ( 𝑦 = 𝐷 → ( ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝑦 ) ⊆ 𝐶 ) ↔ ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝐷 ) ⊆ 𝐶 ) ) )
7 nfcv 𝑥 𝑦
8 nfra1 𝑥𝑥𝐴 𝐵𝐶
9 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
10 1 9 nfcxfr 𝑥 𝐹
11 10 7 nffv 𝑥 ( 𝐹𝑦 )
12 nfcv 𝑥 𝐶
13 11 12 nfss 𝑥 ( 𝐹𝑦 ) ⊆ 𝐶
14 8 13 nfim 𝑥 ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝑦 ) ⊆ 𝐶 )
15 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
16 15 sseq1d ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) ⊆ 𝐶 ↔ ( 𝐹𝑦 ) ⊆ 𝐶 ) )
17 16 imbi2d ( 𝑥 = 𝑦 → ( ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝑥 ) ⊆ 𝐶 ) ↔ ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝑦 ) ⊆ 𝐶 ) ) )
18 1 dmmpt dom 𝐹 = { 𝑥𝐴𝐵 ∈ V }
19 18 rabeq2i ( 𝑥 ∈ dom 𝐹 ↔ ( 𝑥𝐴𝐵 ∈ V ) )
20 1 fvmpt2 ( ( 𝑥𝐴𝐵 ∈ V ) → ( 𝐹𝑥 ) = 𝐵 )
21 eqimss ( ( 𝐹𝑥 ) = 𝐵 → ( 𝐹𝑥 ) ⊆ 𝐵 )
22 20 21 syl ( ( 𝑥𝐴𝐵 ∈ V ) → ( 𝐹𝑥 ) ⊆ 𝐵 )
23 19 22 sylbi ( 𝑥 ∈ dom 𝐹 → ( 𝐹𝑥 ) ⊆ 𝐵 )
24 ndmfv ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹𝑥 ) = ∅ )
25 0ss ∅ ⊆ 𝐵
26 24 25 eqsstrdi ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹𝑥 ) ⊆ 𝐵 )
27 23 26 pm2.61i ( 𝐹𝑥 ) ⊆ 𝐵
28 rsp ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑥𝐴𝐵𝐶 ) )
29 28 impcom ( ( 𝑥𝐴 ∧ ∀ 𝑥𝐴 𝐵𝐶 ) → 𝐵𝐶 )
30 27 29 sstrid ( ( 𝑥𝐴 ∧ ∀ 𝑥𝐴 𝐵𝐶 ) → ( 𝐹𝑥 ) ⊆ 𝐶 )
31 30 ex ( 𝑥𝐴 → ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝑥 ) ⊆ 𝐶 ) )
32 7 14 17 31 vtoclgaf ( 𝑦𝐴 → ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝑦 ) ⊆ 𝐶 ) )
33 6 32 vtoclga ( 𝐷𝐴 → ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝐷 ) ⊆ 𝐶 ) )
34 33 impcom ( ( ∀ 𝑥𝐴 𝐵𝐶𝐷𝐴 ) → ( 𝐹𝐷 ) ⊆ 𝐶 )
35 3 34 sylan2 ( ( ∀ 𝑥𝐴 𝐵𝐶𝐷 ∈ dom 𝐹 ) → ( 𝐹𝐷 ) ⊆ 𝐶 )
36 ndmfv ( ¬ 𝐷 ∈ dom 𝐹 → ( 𝐹𝐷 ) = ∅ )
37 36 adantl ( ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹 ) → ( 𝐹𝐷 ) = ∅ )
38 0ss ∅ ⊆ 𝐶
39 37 38 eqsstrdi ( ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹 ) → ( 𝐹𝐷 ) ⊆ 𝐶 )
40 35 39 pm2.61dan ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐹𝐷 ) ⊆ 𝐶 )