Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) |
2 |
1
|
fveq1d |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
3 |
|
risset |
⊢ ( 𝐴 ∈ 𝐷 ↔ ∃ 𝑥 ∈ 𝐷 𝑥 = 𝐴 ) |
4 |
|
elex |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) |
5 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝐶 ∈ V |
7 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) |
8 |
7
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 |
9 |
6 8
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
10 |
|
simprl |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝑥 ∈ 𝐷 ) |
11 |
|
simplr |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝐵 = 𝐶 ) |
12 |
|
simprr |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝐶 ∈ V ) |
13 |
11 12
|
eqeltrd |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝐵 ∈ V ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
15 |
14
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
16 |
10 13 15
|
syl2anc |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
17 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝑥 = 𝐴 ) |
18 |
17
|
fveq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
19 |
16 18 11
|
3eqtr3d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
20 |
19
|
exp43 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐷 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
21 |
20
|
a2i |
⊢ ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐷 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
22 |
21
|
com23 |
⊢ ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐷 → ( 𝑥 = 𝐴 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
23 |
22
|
sps |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐷 → ( 𝑥 = 𝐴 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
24 |
5 9 23
|
rexlimd |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ 𝐷 𝑥 = 𝐴 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) |
25 |
4 24
|
syl7 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ 𝐷 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) |
26 |
3 25
|
syl5bi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝐴 ∈ 𝐷 → ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) |
27 |
26
|
imp32 |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
28 |
27
|
3adant2 |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
29 |
2 28
|
eqtrd |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |