| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ )  →  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 3 | 1 2 | anim12i | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) )  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) | 
						
							| 4 |  | simprl | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) )  →  𝐺  Fn  𝐵 ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 6 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) )  →  ∅  ∈  V ) | 
						
							| 8 |  | elsuppfn | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝐵  ∈  𝑉  ∧  ∅  ∈  V )  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) )  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 10 | 3 9 | mpbird | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) )  →  𝑋  ∈  ( 𝐺  supp  ∅ ) ) |