Step |
Hyp |
Ref |
Expression |
1 |
|
fvn0elsupp |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
2 |
1
|
exp43 |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑋 ∈ 𝐵 → ( 𝐺 Fn 𝐵 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) ) ) |
3 |
2
|
3imp |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) |
4 |
|
simp3 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → 𝐺 Fn 𝐵 ) |
5 |
|
simp1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → 𝐵 ∈ 𝑉 ) |
6 |
|
0ex |
⊢ ∅ ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ∅ ∈ V ) |
8 |
|
elsuppfn |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
9 |
4 5 7 8
|
syl3anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) → ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) |
11 |
9 10
|
syl6bi |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
12 |
3 11
|
impbid |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) |