Metamath Proof Explorer


Theorem fvn0elsuppb

Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion fvn0elsuppb ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → ( ( 𝐺𝑋 ) ≠ ∅ ↔ 𝑋 ∈ ( 𝐺 supp ∅ ) ) )

Proof

Step Hyp Ref Expression
1 fvn0elsupp ( ( ( 𝐵𝑉𝑋𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺𝑋 ) ≠ ∅ ) ) → 𝑋 ∈ ( 𝐺 supp ∅ ) )
2 1 exp43 ( 𝐵𝑉 → ( 𝑋𝐵 → ( 𝐺 Fn 𝐵 → ( ( 𝐺𝑋 ) ≠ ∅ → 𝑋 ∈ ( 𝐺 supp ∅ ) ) ) ) )
3 2 3imp ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → ( ( 𝐺𝑋 ) ≠ ∅ → 𝑋 ∈ ( 𝐺 supp ∅ ) ) )
4 simp3 ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → 𝐺 Fn 𝐵 )
5 simp1 ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → 𝐵𝑉 )
6 0ex ∅ ∈ V
7 6 a1i ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → ∅ ∈ V )
8 elsuppfn ( ( 𝐺 Fn 𝐵𝐵𝑉 ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋𝐵 ∧ ( 𝐺𝑋 ) ≠ ∅ ) ) )
9 4 5 7 8 syl3anc ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋𝐵 ∧ ( 𝐺𝑋 ) ≠ ∅ ) ) )
10 simpr ( ( 𝑋𝐵 ∧ ( 𝐺𝑋 ) ≠ ∅ ) → ( 𝐺𝑋 ) ≠ ∅ )
11 9 10 syl6bi ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → ( 𝐺𝑋 ) ≠ ∅ ) )
12 3 11 impbid ( ( 𝐵𝑉𝑋𝐵𝐺 Fn 𝐵 ) → ( ( 𝐺𝑋 ) ≠ ∅ ↔ 𝑋 ∈ ( 𝐺 supp ∅ ) ) )