Step |
Hyp |
Ref |
Expression |
1 |
|
fvfundmfvn0 |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) |
2 |
|
eldmressnsn |
⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) ) |
3 |
|
fvelrn |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) ) → ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ) |
4 |
|
pm3.2 |
⊢ ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) → ( 𝑋 ∈ dom 𝐹 → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) ) → ( 𝑋 ∈ dom 𝐹 → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) ) ) |
6 |
5
|
ex |
⊢ ( Fun ( 𝐹 ↾ { 𝑋 } ) → ( 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) → ( 𝑋 ∈ dom 𝐹 → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) ) ) ) |
7 |
6
|
com13 |
⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑋 ∈ dom ( 𝐹 ↾ { 𝑋 } ) → ( Fun ( 𝐹 ↾ { 𝑋 } ) → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) ) ) ) |
8 |
2 7
|
mpd |
⊢ ( 𝑋 ∈ dom 𝐹 → ( Fun ( 𝐹 ↾ { 𝑋 } ) → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) ) |
10 |
|
fvressn |
⊢ ( 𝑋 ∈ dom 𝐹 → ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑋 ∈ dom 𝐹 → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ) ) |
12 |
|
fvrnressn |
⊢ ( 𝑋 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) ) |
13 |
11 12
|
sylbid |
⊢ ( 𝑋 ∈ dom 𝐹 → ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) ) |
14 |
13
|
impcom |
⊢ ( ( ( ( 𝐹 ↾ { 𝑋 } ) ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) |
15 |
1 9 14
|
3syl |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) |