| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvfundmfvn0 | ⊢ ( ( 𝐹 ‘ 𝑋 )  ≠  ∅  →  ( 𝑋  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝑋 } ) ) ) | 
						
							| 2 |  | eldmressnsn | ⊢ ( 𝑋  ∈  dom  𝐹  →  𝑋  ∈  dom  ( 𝐹  ↾  { 𝑋 } ) ) | 
						
							| 3 |  | fvelrn | ⊢ ( ( Fun  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  ( 𝐹  ↾  { 𝑋 } ) )  →  ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } ) ) | 
						
							| 4 |  | pm3.2 | ⊢ ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  →  ( 𝑋  ∈  dom  𝐹  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( Fun  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  ( 𝐹  ↾  { 𝑋 } ) )  →  ( 𝑋  ∈  dom  𝐹  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 ) ) ) | 
						
							| 6 | 5 | ex | ⊢ ( Fun  ( 𝐹  ↾  { 𝑋 } )  →  ( 𝑋  ∈  dom  ( 𝐹  ↾  { 𝑋 } )  →  ( 𝑋  ∈  dom  𝐹  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 ) ) ) ) | 
						
							| 7 | 6 | com13 | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( 𝑋  ∈  dom  ( 𝐹  ↾  { 𝑋 } )  →  ( Fun  ( 𝐹  ↾  { 𝑋 } )  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 ) ) ) ) | 
						
							| 8 | 2 7 | mpd | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( Fun  ( 𝐹  ↾  { 𝑋 } )  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 ) ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝑋  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝑋 } ) )  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 ) ) | 
						
							| 10 |  | fvressn | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ↔  ( 𝐹 ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } ) ) ) | 
						
							| 12 |  | fvrnressn | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 ) ) | 
						
							| 13 | 11 12 | sylbid | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( ( ( 𝐹  ↾  { 𝑋 } ) ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  ∧  𝑋  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 ) | 
						
							| 15 | 1 9 14 | 3syl | ⊢ ( ( 𝐹 ‘ 𝑋 )  ≠  ∅  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 ) |