| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvopab3g.2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | fvopab3g.3 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | fvopab3g.4 | ⊢ ( 𝑥  ∈  𝐶  →  ∃! 𝑦 𝜑 ) | 
						
							| 4 |  | fvopab3g.5 | ⊢ 𝐹  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝜑 ) } | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝐶  ↔  𝐴  ∈  𝐶 ) ) | 
						
							| 6 | 5 1 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐶  ∧  𝜑 )  ↔  ( 𝐴  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 7 | 2 | anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∈  𝐶  ∧  𝜓 )  ↔  ( 𝐴  ∈  𝐶  ∧  𝜒 ) ) ) | 
						
							| 8 | 6 7 | opelopabg | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 〈 𝐴 ,  𝐵 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝜑 ) }  ↔  ( 𝐴  ∈  𝐶  ∧  𝜒 ) ) ) | 
						
							| 9 | 3 4 | fnopab | ⊢ 𝐹  Fn  𝐶 | 
						
							| 10 |  | fnopfvb | ⊢ ( ( 𝐹  Fn  𝐶  ∧  𝐴  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐴 )  =  𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  𝐹 ) ) | 
						
							| 11 | 9 10 | mpan | ⊢ ( 𝐴  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐴 )  =  𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  𝐹 ) ) | 
						
							| 12 | 4 | eleq2i | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  𝐹  ↔  〈 𝐴 ,  𝐵 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝜑 ) } ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( 𝐴  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐴 )  =  𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝜑 ) } ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝐴 )  =  𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝜑 ) } ) ) | 
						
							| 15 |  | ibar | ⊢ ( 𝐴  ∈  𝐶  →  ( 𝜒  ↔  ( 𝐴  ∈  𝐶  ∧  𝜒 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝜒  ↔  ( 𝐴  ∈  𝐶  ∧  𝜒 ) ) ) | 
						
							| 17 | 8 14 16 | 3bitr4d | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝐴 )  =  𝐵  ↔  𝜒 ) ) |