Step |
Hyp |
Ref |
Expression |
1 |
|
fvopab3g.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
fvopab3g.3 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
fvopab3g.4 |
⊢ ( 𝑥 ∈ 𝐶 → ∃! 𝑦 𝜑 ) |
4 |
|
fvopab3g.5 |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
6 |
5 1
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜓 ) ) ) |
7 |
2
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
8 |
6 7
|
opelopabg |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
9 |
3 4
|
fnopab |
⊢ 𝐹 Fn 𝐶 |
10 |
|
fnopfvb |
⊢ ( ( 𝐹 Fn 𝐶 ∧ 𝐴 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |
11 |
9 10
|
mpan |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |
12 |
4
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) |
13 |
11 12
|
bitrdi |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜑 ) } ) ) |
15 |
|
ibar |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝜒 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝜒 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝜒 ) ) ) |
17 |
8 14 16
|
3bitr4d |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 𝜒 ) ) |