Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvopab4ndm.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
Assertion | fvopab4ndm | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvopab4ndm.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
2 | 1 | dmeqi | ⊢ dom 𝐹 = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
3 | dmopabss | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 | |
4 | 2 3 | eqsstri | ⊢ dom 𝐹 ⊆ 𝐴 |
5 | 4 | sseli | ⊢ ( 𝐵 ∈ dom 𝐹 → 𝐵 ∈ 𝐴 ) |
6 | ndmfv | ⊢ ( ¬ 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ∅ ) | |
7 | 5 6 | nsyl5 | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐹 ‘ 𝐵 ) = ∅ ) |