Metamath Proof Explorer


Theorem fvopab5

Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvopab5.1 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
fvopab5.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion fvopab5 ( 𝐴𝑉 → ( 𝐹𝐴 ) = ( ℩ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 fvopab5.1 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
2 fvopab5.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 elex ( 𝐴𝑉𝐴 ∈ V )
4 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑧 𝐴 𝐹 𝑧 )
5 breq2 ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧𝐴 𝐹 𝑦 ) )
6 nfcv 𝑦 𝐴
7 nfopab2 𝑦 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
8 1 7 nfcxfr 𝑦 𝐹
9 nfcv 𝑦 𝑧
10 6 8 9 nfbr 𝑦 𝐴 𝐹 𝑧
11 nfv 𝑧 𝐴 𝐹 𝑦
12 5 10 11 cbviotaw ( ℩ 𝑧 𝐴 𝐹 𝑧 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 )
13 4 12 eqtri ( 𝐹𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 )
14 nfcv 𝑥 𝐴
15 nfopab1 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
16 1 15 nfcxfr 𝑥 𝐹
17 nfcv 𝑥 𝑦
18 14 16 17 nfbr 𝑥 𝐴 𝐹 𝑦
19 nfv 𝑥 𝜓
20 18 19 nfbi 𝑥 ( 𝐴 𝐹 𝑦𝜓 )
21 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦𝐴 𝐹 𝑦 ) )
22 21 2 bibi12d ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦𝜑 ) ↔ ( 𝐴 𝐹 𝑦𝜓 ) ) )
23 df-br ( 𝑥 𝐹 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 )
24 1 eleq2i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
25 opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜑 )
26 23 24 25 3bitri ( 𝑥 𝐹 𝑦𝜑 )
27 20 22 26 vtoclg1f ( 𝐴 ∈ V → ( 𝐴 𝐹 𝑦𝜓 ) )
28 27 iotabidv ( 𝐴 ∈ V → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = ( ℩ 𝑦 𝜓 ) )
29 13 28 eqtrid ( 𝐴 ∈ V → ( 𝐹𝐴 ) = ( ℩ 𝑦 𝜓 ) )
30 3 29 syl ( 𝐴𝑉 → ( 𝐹𝐴 ) = ( ℩ 𝑦 𝜓 ) )