Step |
Hyp |
Ref |
Expression |
1 |
|
fvopab6.1 |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜑 ∧ 𝑦 = 𝐵 ) } |
2 |
|
fvopab6.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
fvopab6.3 |
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
4 |
|
elex |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ V ) |
5 |
3
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐶 ) ) |
6 |
2 5
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ↔ ( 𝜓 ∧ 𝑦 = 𝐶 ) ) ) |
7 |
|
iba |
⊢ ( 𝑦 = 𝐶 → ( 𝜓 ↔ ( 𝜓 ∧ 𝑦 = 𝐶 ) ) ) |
8 |
7
|
bicomd |
⊢ ( 𝑦 = 𝐶 → ( ( 𝜓 ∧ 𝑦 = 𝐶 ) ↔ 𝜓 ) ) |
9 |
|
moeq |
⊢ ∃* 𝑦 𝑦 = 𝐵 |
10 |
9
|
moani |
⊢ ∃* 𝑦 ( 𝜑 ∧ 𝑦 = 𝐵 ) |
11 |
10
|
a1i |
⊢ ( 𝑥 ∈ V → ∃* 𝑦 ( 𝜑 ∧ 𝑦 = 𝐵 ) ) |
12 |
|
vex |
⊢ 𝑥 ∈ V |
13 |
12
|
biantrur |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ V ∧ ( 𝜑 ∧ 𝑦 = 𝐵 ) ) ) |
14 |
13
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜑 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ ( 𝜑 ∧ 𝑦 = 𝐵 ) ) } |
15 |
1 14
|
eqtri |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ ( 𝜑 ∧ 𝑦 = 𝐵 ) ) } |
16 |
6 8 11 15
|
fvopab3ig |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑅 ) → ( 𝜓 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
17 |
4 16
|
sylan |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ) → ( 𝜓 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |