Metamath Proof Explorer


Theorem fvopab6

Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses fvopab6.1 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐵 ) }
fvopab6.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
fvopab6.3 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion fvopab6 ( ( 𝐴𝐷𝐶𝑅𝜓 ) → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvopab6.1 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐵 ) }
2 fvopab6.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 fvopab6.3 ( 𝑥 = 𝐴𝐵 = 𝐶 )
4 elex ( 𝐴𝐷𝐴 ∈ V )
5 3 eqeq2d ( 𝑥 = 𝐴 → ( 𝑦 = 𝐵𝑦 = 𝐶 ) )
6 2 5 anbi12d ( 𝑥 = 𝐴 → ( ( 𝜑𝑦 = 𝐵 ) ↔ ( 𝜓𝑦 = 𝐶 ) ) )
7 iba ( 𝑦 = 𝐶 → ( 𝜓 ↔ ( 𝜓𝑦 = 𝐶 ) ) )
8 7 bicomd ( 𝑦 = 𝐶 → ( ( 𝜓𝑦 = 𝐶 ) ↔ 𝜓 ) )
9 moeq ∃* 𝑦 𝑦 = 𝐵
10 9 moani ∃* 𝑦 ( 𝜑𝑦 = 𝐵 )
11 10 a1i ( 𝑥 ∈ V → ∃* 𝑦 ( 𝜑𝑦 = 𝐵 ) )
12 vex 𝑥 ∈ V
13 12 biantrur ( ( 𝜑𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ V ∧ ( 𝜑𝑦 = 𝐵 ) ) )
14 13 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝑦 = 𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ ( 𝜑𝑦 = 𝐵 ) ) }
15 1 14 eqtri 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ ( 𝜑𝑦 = 𝐵 ) ) }
16 6 8 11 15 fvopab3ig ( ( 𝐴 ∈ V ∧ 𝐶𝑅 ) → ( 𝜓 → ( 𝐹𝐴 ) = 𝐶 ) )
17 4 16 sylan ( ( 𝐴𝐷𝐶𝑅 ) → ( 𝜓 → ( 𝐹𝐴 ) = 𝐶 ) )
18 17 3impia ( ( 𝐴𝐷𝐶𝑅𝜓 ) → ( 𝐹𝐴 ) = 𝐶 )