Metamath Proof Explorer


Theorem fvpr1o

Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023)

Ref Expression
Assertion fvpr1o ( 𝐵𝑉 → ( { ⟨ ∅ , 𝐴 ⟩ , ⟨ 1o , 𝐵 ⟩ } ‘ 1o ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 1n0 1o ≠ ∅
3 2 necomi ∅ ≠ 1o
4 fvpr2g ( ( 1o ∈ ω ∧ 𝐵𝑉 ∧ ∅ ≠ 1o ) → ( { ⟨ ∅ , 𝐴 ⟩ , ⟨ 1o , 𝐵 ⟩ } ‘ 1o ) = 𝐵 )
5 1 3 4 mp3an13 ( 𝐵𝑉 → ( { ⟨ ∅ , 𝐴 ⟩ , ⟨ 1o , 𝐵 ⟩ } ‘ 1o ) = 𝐵 )