Metamath Proof Explorer


Theorem fvpr2g

Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017)

Ref Expression
Assertion fvpr2g ( ( 𝐵𝑉𝐷𝑊𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 prcom { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { ⟨ 𝐵 , 𝐷 ⟩ , ⟨ 𝐴 , 𝐶 ⟩ }
2 df-pr { ⟨ 𝐵 , 𝐷 ⟩ , ⟨ 𝐴 , 𝐶 ⟩ } = ( { ⟨ 𝐵 , 𝐷 ⟩ } ∪ { ⟨ 𝐴 , 𝐶 ⟩ } )
3 1 2 eqtri { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = ( { ⟨ 𝐵 , 𝐷 ⟩ } ∪ { ⟨ 𝐴 , 𝐶 ⟩ } )
4 3 fveq1i ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = ( ( { ⟨ 𝐵 , 𝐷 ⟩ } ∪ { ⟨ 𝐴 , 𝐶 ⟩ } ) ‘ 𝐵 )
5 fvunsn ( 𝐴𝐵 → ( ( { ⟨ 𝐵 , 𝐷 ⟩ } ∪ { ⟨ 𝐴 , 𝐶 ⟩ } ) ‘ 𝐵 ) = ( { ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) )
6 4 5 syl5eq ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = ( { ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) )
7 6 3ad2ant3 ( ( 𝐵𝑉𝐷𝑊𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = ( { ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) )
8 fvsng ( ( 𝐵𝑉𝐷𝑊 ) → ( { ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐷 )
9 8 3adant3 ( ( 𝐵𝑉𝐷𝑊𝐴𝐵 ) → ( { ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐷 )
10 7 9 eqtrd ( ( 𝐵𝑉𝐷𝑊𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐷 )