Metamath Proof Explorer


Theorem fvprcALT

Description: Alternate proof of fvprc using ax-pow instead of ax-sep and ax-pr . (Contributed by NM, 20-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fvprcALT ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 brprcneu ( ¬ 𝐴 ∈ V → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 )
2 tz6.12-2 ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = ∅ )
3 1 2 syl ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )