Step |
Hyp |
Ref |
Expression |
1 |
|
fvprmselelfz.f |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) |
2 |
|
eleq1 |
⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ ) ) |
3 |
|
id |
⊢ ( 𝑚 = 𝑋 → 𝑚 = 𝑋 ) |
4 |
2 3
|
ifbieq1d |
⊢ ( 𝑚 = 𝑋 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) ) |
5 |
|
iftrue |
⊢ ( 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
7 |
4 6
|
sylan9eqr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
8 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝑁 ) → 𝑋 ∈ ℕ ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ ℕ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 𝑋 ∈ ℕ ) |
11 |
1 7 10 10
|
fvmptd2 |
⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
12 |
|
simprr |
⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 𝑋 ∈ ( 1 ... 𝑁 ) ) |
13 |
11 12
|
eqeltrd |
⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |
14 |
|
iffalse |
⊢ ( ¬ 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
15 |
14
|
adantr |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
16 |
4 15
|
sylan9eqr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
17 |
9
|
adantl |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 𝑋 ∈ ℕ ) |
18 |
|
1nn |
⊢ 1 ∈ ℕ |
19 |
18
|
a1i |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 1 ∈ ℕ ) |
20 |
1 16 17 19
|
fvmptd2 |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
21 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
22 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
23 |
21 22
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ( 1 ... 𝑁 ) ) |
25 |
24
|
adantl |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 1 ∈ ( 1 ... 𝑁 ) ) |
26 |
20 25
|
eqeltrd |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |
27 |
13 26
|
pm2.61ian |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |