Step |
Hyp |
Ref |
Expression |
1 |
|
fvprmselelfz.f |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) |
2 |
|
eleq1 |
⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ ) ) |
3 |
|
id |
⊢ ( 𝑚 = 𝑋 → 𝑚 = 𝑋 ) |
4 |
2 3
|
ifbieq1d |
⊢ ( 𝑚 = 𝑋 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) ) |
5 |
|
iftrue |
⊢ ( 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
7 |
4 6
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
8 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝑁 ) → 𝑋 ∈ ℕ ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ ℕ ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
11 |
1 7 10 10
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
12 |
|
eleq1 |
⊢ ( 𝑚 = 𝑌 → ( 𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ ) ) |
13 |
|
id |
⊢ ( 𝑚 = 𝑌 → 𝑚 = 𝑌 ) |
14 |
12 13
|
ifbieq1d |
⊢ ( 𝑚 = 𝑌 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) ) |
15 |
|
iftrue |
⊢ ( 𝑌 ∈ ℙ → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
17 |
14 16
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑌 ) |
18 |
|
elfznn |
⊢ ( 𝑌 ∈ ( 1 ... 𝑁 ) → 𝑌 ∈ ℕ ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ ℕ ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
21 |
1 17 20 20
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑌 ) |
22 |
11 21
|
oveq12d |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 gcd 𝑌 ) ) |
23 |
|
prmrp |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 gcd 𝑌 ) = 1 ↔ 𝑋 ≠ 𝑌 ) ) |
24 |
23
|
biimprcd |
⊢ ( 𝑋 ≠ 𝑌 → ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( 𝑋 gcd 𝑌 ) = 1 ) ) |
25 |
24
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( 𝑋 gcd 𝑌 ) = 1 ) ) |
26 |
25
|
impcom |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 gcd 𝑌 ) = 1 ) |
27 |
22 26
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
28 |
27
|
ex |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
29 |
5
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
30 |
4 29
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
31 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
32 |
1 30 31 31
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
33 |
|
iffalse |
⊢ ( ¬ 𝑌 ∈ ℙ → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
35 |
14 34
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
36 |
19
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
37 |
|
1nn |
⊢ 1 ∈ ℕ |
38 |
37
|
a1i |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
39 |
1 35 36 38
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 1 ) |
40 |
32 39
|
oveq12d |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 gcd 1 ) ) |
41 |
|
prmz |
⊢ ( 𝑋 ∈ ℙ → 𝑋 ∈ ℤ ) |
42 |
|
gcd1 |
⊢ ( 𝑋 ∈ ℤ → ( 𝑋 gcd 1 ) = 1 ) |
43 |
41 42
|
syl |
⊢ ( 𝑋 ∈ ℙ → ( 𝑋 gcd 1 ) = 1 ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 gcd 1 ) = 1 ) |
45 |
40 44
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
46 |
45
|
ex |
⊢ ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
47 |
|
iffalse |
⊢ ( ¬ 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
49 |
4 48
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
50 |
9
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
51 |
37
|
a1i |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
52 |
1 49 50 51
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
53 |
15
|
ad2antlr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
54 |
14 53
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑌 ) |
55 |
19
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
56 |
1 54 55 55
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑌 ) |
57 |
52 56
|
oveq12d |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 1 gcd 𝑌 ) ) |
58 |
|
prmz |
⊢ ( 𝑌 ∈ ℙ → 𝑌 ∈ ℤ ) |
59 |
|
1gcd |
⊢ ( 𝑌 ∈ ℤ → ( 1 gcd 𝑌 ) = 1 ) |
60 |
58 59
|
syl |
⊢ ( 𝑌 ∈ ℙ → ( 1 gcd 𝑌 ) = 1 ) |
61 |
60
|
ad2antlr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 1 gcd 𝑌 ) = 1 ) |
62 |
57 61
|
eqtrd |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
63 |
62
|
ex |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
64 |
47
|
ad2antrr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
65 |
4 64
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
66 |
9
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
67 |
37
|
a1i |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
68 |
1 65 66 67
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
69 |
33
|
ad2antlr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
70 |
14 69
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
71 |
19
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
72 |
1 70 71 67
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 1 ) |
73 |
68 72
|
oveq12d |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 1 gcd 1 ) ) |
74 |
|
1z |
⊢ 1 ∈ ℤ |
75 |
|
1gcd |
⊢ ( 1 ∈ ℤ → ( 1 gcd 1 ) = 1 ) |
76 |
74 75
|
mp1i |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 1 gcd 1 ) = 1 ) |
77 |
73 76
|
eqtrd |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
78 |
77
|
ex |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
79 |
28 46 63 78
|
4cases |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |