| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvprmselelfz.f |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) |
| 2 |
|
eleq1 |
⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ ) ) |
| 3 |
|
id |
⊢ ( 𝑚 = 𝑋 → 𝑚 = 𝑋 ) |
| 4 |
2 3
|
ifbieq1d |
⊢ ( 𝑚 = 𝑋 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) ) |
| 5 |
|
iftrue |
⊢ ( 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
| 7 |
4 6
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
| 8 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝑁 ) → 𝑋 ∈ ℕ ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ ℕ ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 11 |
1 7 10 10
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 12 |
|
eleq1 |
⊢ ( 𝑚 = 𝑌 → ( 𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ ) ) |
| 13 |
|
id |
⊢ ( 𝑚 = 𝑌 → 𝑚 = 𝑌 ) |
| 14 |
12 13
|
ifbieq1d |
⊢ ( 𝑚 = 𝑌 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) ) |
| 15 |
|
iftrue |
⊢ ( 𝑌 ∈ ℙ → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
| 17 |
14 16
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑌 ) |
| 18 |
|
elfznn |
⊢ ( 𝑌 ∈ ( 1 ... 𝑁 ) → 𝑌 ∈ ℕ ) |
| 19 |
18
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ ℕ ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 21 |
1 17 20 20
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑌 ) |
| 22 |
11 21
|
oveq12d |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 gcd 𝑌 ) ) |
| 23 |
|
prmrp |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 gcd 𝑌 ) = 1 ↔ 𝑋 ≠ 𝑌 ) ) |
| 24 |
23
|
biimprcd |
⊢ ( 𝑋 ≠ 𝑌 → ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( 𝑋 gcd 𝑌 ) = 1 ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( 𝑋 gcd 𝑌 ) = 1 ) ) |
| 26 |
25
|
impcom |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 gcd 𝑌 ) = 1 ) |
| 27 |
22 26
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 28 |
27
|
ex |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 29 |
5
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
| 30 |
4 29
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
| 31 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 32 |
1 30 31 31
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 33 |
|
iffalse |
⊢ ( ¬ 𝑌 ∈ ℙ → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
| 34 |
33
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
| 35 |
14 34
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 36 |
19
|
adantl |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 37 |
|
1nn |
⊢ 1 ∈ ℕ |
| 38 |
37
|
a1i |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
| 39 |
1 35 36 38
|
fvmptd2 |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 1 ) |
| 40 |
32 39
|
oveq12d |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 gcd 1 ) ) |
| 41 |
|
prmz |
⊢ ( 𝑋 ∈ ℙ → 𝑋 ∈ ℤ ) |
| 42 |
|
gcd1 |
⊢ ( 𝑋 ∈ ℤ → ( 𝑋 gcd 1 ) = 1 ) |
| 43 |
41 42
|
syl |
⊢ ( 𝑋 ∈ ℙ → ( 𝑋 gcd 1 ) = 1 ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 gcd 1 ) = 1 ) |
| 45 |
40 44
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 46 |
45
|
ex |
⊢ ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 47 |
|
iffalse |
⊢ ( ¬ 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
| 49 |
4 48
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 50 |
9
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 51 |
37
|
a1i |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
| 52 |
1 49 50 51
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 53 |
15
|
ad2antlr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
| 54 |
14 53
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑌 ) |
| 55 |
19
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 56 |
1 54 55 55
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑌 ) |
| 57 |
52 56
|
oveq12d |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 1 gcd 𝑌 ) ) |
| 58 |
|
prmz |
⊢ ( 𝑌 ∈ ℙ → 𝑌 ∈ ℤ ) |
| 59 |
|
1gcd |
⊢ ( 𝑌 ∈ ℤ → ( 1 gcd 𝑌 ) = 1 ) |
| 60 |
58 59
|
syl |
⊢ ( 𝑌 ∈ ℙ → ( 1 gcd 𝑌 ) = 1 ) |
| 61 |
60
|
ad2antlr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 1 gcd 𝑌 ) = 1 ) |
| 62 |
57 61
|
eqtrd |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 63 |
62
|
ex |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 64 |
47
|
ad2antrr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
| 65 |
4 64
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 66 |
9
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 67 |
37
|
a1i |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
| 68 |
1 65 66 67
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 69 |
33
|
ad2antlr |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
| 70 |
14 69
|
sylan9eqr |
⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 71 |
19
|
adantl |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 72 |
1 70 71 67
|
fvmptd2 |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 1 ) |
| 73 |
68 72
|
oveq12d |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 1 gcd 1 ) ) |
| 74 |
|
1z |
⊢ 1 ∈ ℤ |
| 75 |
|
1gcd |
⊢ ( 1 ∈ ℤ → ( 1 gcd 1 ) = 1 ) |
| 76 |
74 75
|
mp1i |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 1 gcd 1 ) = 1 ) |
| 77 |
73 76
|
eqtrd |
⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 78 |
77
|
ex |
⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 79 |
28 46 63 78
|
4cases |
⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |