Metamath Proof Explorer


Theorem fvproj

Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that F and G are the projections of H to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019)

Ref Expression
Hypotheses fvproj.h 𝐻 = ( 𝑥𝐴 , 𝑦𝐵 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ )
fvproj.x ( 𝜑𝑋𝐴 )
fvproj.y ( 𝜑𝑌𝐵 )
Assertion fvproj ( 𝜑 → ( 𝐻 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑌 ) ⟩ )

Proof

Step Hyp Ref Expression
1 fvproj.h 𝐻 = ( 𝑥𝐴 , 𝑦𝐵 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ )
2 fvproj.x ( 𝜑𝑋𝐴 )
3 fvproj.y ( 𝜑𝑌𝐵 )
4 df-ov ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
5 fveq2 ( 𝑎 = 𝑋 → ( 𝐹𝑎 ) = ( 𝐹𝑋 ) )
6 5 opeq1d ( 𝑎 = 𝑋 → ⟨ ( 𝐹𝑎 ) , ( 𝐺𝑏 ) ⟩ = ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑏 ) ⟩ )
7 fveq2 ( 𝑏 = 𝑌 → ( 𝐺𝑏 ) = ( 𝐺𝑌 ) )
8 7 opeq2d ( 𝑏 = 𝑌 → ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑏 ) ⟩ = ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑌 ) ⟩ )
9 fveq2 ( 𝑥 = 𝑎 → ( 𝐹𝑥 ) = ( 𝐹𝑎 ) )
10 9 opeq1d ( 𝑥 = 𝑎 → ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ = ⟨ ( 𝐹𝑎 ) , ( 𝐺𝑦 ) ⟩ )
11 fveq2 ( 𝑦 = 𝑏 → ( 𝐺𝑦 ) = ( 𝐺𝑏 ) )
12 11 opeq2d ( 𝑦 = 𝑏 → ⟨ ( 𝐹𝑎 ) , ( 𝐺𝑦 ) ⟩ = ⟨ ( 𝐹𝑎 ) , ( 𝐺𝑏 ) ⟩ )
13 10 12 cbvmpov ( 𝑥𝐴 , 𝑦𝐵 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) = ( 𝑎𝐴 , 𝑏𝐵 ↦ ⟨ ( 𝐹𝑎 ) , ( 𝐺𝑏 ) ⟩ )
14 1 13 eqtri 𝐻 = ( 𝑎𝐴 , 𝑏𝐵 ↦ ⟨ ( 𝐹𝑎 ) , ( 𝐺𝑏 ) ⟩ )
15 opex ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑌 ) ⟩ ∈ V
16 6 8 14 15 ovmpo ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 𝐻 𝑌 ) = ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑌 ) ⟩ )
17 2 3 16 syl2anc ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑌 ) ⟩ )
18 4 17 eqtr3id ( 𝜑 → ( 𝐻 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ⟨ ( 𝐹𝑋 ) , ( 𝐺𝑌 ) ⟩ )