Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvres | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | brresi | ⊢ ( 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 𝐹 𝑥 ) ) |
| 3 | 2 | baib | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ↔ 𝐴 𝐹 𝑥 ) ) |
| 4 | 3 | iotabidv | ⊢ ( 𝐴 ∈ 𝐵 → ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
| 5 | df-fv | ⊢ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) | |
| 6 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |