Metamath Proof Explorer


Theorem fvres

Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994)

Ref Expression
Assertion fvres ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 brresi ( 𝐴 ( 𝐹𝐵 ) 𝑥 ↔ ( 𝐴𝐵𝐴 𝐹 𝑥 ) )
3 2 baib ( 𝐴𝐵 → ( 𝐴 ( 𝐹𝐵 ) 𝑥𝐴 𝐹 𝑥 ) )
4 3 iotabidv ( 𝐴𝐵 → ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
5 df-fv ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 )
6 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 )
7 4 5 6 3eqtr4g ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )