Step |
Hyp |
Ref |
Expression |
1 |
|
fvresex.1 |
⊢ 𝐴 ∈ V |
2 |
|
ssv |
⊢ 𝐴 ⊆ V |
3 |
|
resmpt |
⊢ ( 𝐴 ⊆ V → ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) |
5 |
4
|
fveq1i |
⊢ ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
eqid |
⊢ ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) |
8 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
9 |
6 7 8
|
fvmpt |
⊢ ( 𝑥 ∈ V → ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
9
|
elv |
⊢ ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
11 |
|
fveqres |
⊢ ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( ( 𝑧 ∈ V ↦ ( 𝐹 ‘ 𝑧 ) ) ↾ 𝐴 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) |
13 |
5 12
|
eqtr3i |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) |
14 |
13
|
eqeq2i |
⊢ ( 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
15 |
14
|
exbii |
⊢ ( ∃ 𝑥 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
16 |
15
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) } |
17 |
1
|
mptex |
⊢ ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ V |
18 |
17
|
fvclex |
⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) } ∈ V |
19 |
16 18
|
eqeltrri |
⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) } ∈ V |