Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
⊢ ( 𝐹 “ { 𝑋 } ) = ran ( 𝐹 ↾ { 𝑋 } ) |
2 |
1
|
eleq2i |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ { 𝑋 } ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) ) |
3 |
|
opeq1 |
⊢ ( 𝑥 = 𝑋 → 〈 𝑥 , ( 𝐹 ‘ 𝑋 ) 〉 = 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( 〈 𝑥 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) ) |
5 |
4
|
spcegv |
⊢ ( 𝑋 ∈ 𝑉 → ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 → ∃ 𝑥 〈 𝑥 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) ) |
6 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
7 |
|
elimasng |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑋 ) ∈ V ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ { 𝑋 } ) ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ { 𝑋 } ) ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) ) |
9 |
|
elrn2g |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ V → ( ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ↔ ∃ 𝑥 〈 𝑥 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) ) |
10 |
6 9
|
mp1i |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ↔ ∃ 𝑥 〈 𝑥 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) ) |
11 |
5 8 10
|
3imtr4d |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ { 𝑋 } ) → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) ) |
12 |
2 11
|
syl5bir |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝐹 ‘ 𝑋 ) ∈ ran ( 𝐹 ↾ { 𝑋 } ) → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) ) |