| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ima | ⊢ ( 𝐹  “  { 𝑋 } )  =  ran  ( 𝐹  ↾  { 𝑋 } ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  { 𝑋 } )  ↔  ( 𝐹 ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } ) ) | 
						
							| 3 |  | opeq1 | ⊢ ( 𝑥  =  𝑋  →  〈 𝑥 ,  ( 𝐹 ‘ 𝑋 ) 〉  =  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉 ) | 
						
							| 4 | 3 | eleq1d | ⊢ ( 𝑥  =  𝑋  →  ( 〈 𝑥 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹  ↔  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) ) | 
						
							| 5 | 4 | spcegv | ⊢ ( 𝑋  ∈  𝑉  →  ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹  →  ∃ 𝑥 〈 𝑥 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) ) | 
						
							| 6 |  | fvex | ⊢ ( 𝐹 ‘ 𝑋 )  ∈  V | 
						
							| 7 |  | elimasng | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝐹 ‘ 𝑋 )  ∈  V )  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  { 𝑋 } )  ↔  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  { 𝑋 } )  ↔  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) ) | 
						
							| 9 |  | elrn2g | ⊢ ( ( 𝐹 ‘ 𝑋 )  ∈  V  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹  ↔  ∃ 𝑥 〈 𝑥 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) ) | 
						
							| 10 | 6 9 | mp1i | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹  ↔  ∃ 𝑥 〈 𝑥 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) ) | 
						
							| 11 | 5 8 10 | 3imtr4d | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  { 𝑋 } )  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 ) ) | 
						
							| 12 | 2 11 | biimtrrid | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ran  ( 𝐹  ↾  { 𝑋 } )  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 ) ) |