Step |
Hyp |
Ref |
Expression |
1 |
|
setsval |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝑈 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |
3 |
2
|
fveq1d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) ‘ 𝑋 ) = ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) ) |
4 |
|
simp2 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝑊 ) |
5 |
|
simp3 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
6 |
|
neldifsn |
⊢ ¬ 𝑋 ∈ ( V ∖ { 𝑋 } ) |
7 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( ( V ∖ { 𝑋 } ) ∩ dom 𝐹 ) |
8 |
|
inss1 |
⊢ ( ( V ∖ { 𝑋 } ) ∩ dom 𝐹 ) ⊆ ( V ∖ { 𝑋 } ) |
9 |
7 8
|
eqsstri |
⊢ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ⊆ ( V ∖ { 𝑋 } ) |
10 |
9
|
sseli |
⊢ ( 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) → 𝑋 ∈ ( V ∖ { 𝑋 } ) ) |
11 |
6 10
|
mto |
⊢ ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) |
12 |
11
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) |
13 |
|
fsnunfv |
⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ∧ ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) → ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) |
14 |
4 5 12 13
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ‘ 𝑋 ) = 𝑌 ) |
15 |
3 14
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) ‘ 𝑋 ) = 𝑌 ) |