| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsval | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  𝑈 )  →  ( 𝐹  sSet  〈 𝑋 ,  𝑌 〉 )  =  ( ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ) | 
						
							| 2 | 1 | 3adant2 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  ( 𝐹  sSet  〈 𝑋 ,  𝑌 〉 )  =  ( ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ) | 
						
							| 3 | 2 | fveq1d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  ( ( 𝐹  sSet  〈 𝑋 ,  𝑌 〉 ) ‘ 𝑋 )  =  ( ( ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ‘ 𝑋 ) ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  𝑋  ∈  𝑊 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  𝑌  ∈  𝑈 ) | 
						
							| 6 |  | neldifsn | ⊢ ¬  𝑋  ∈  ( V  ∖  { 𝑋 } ) | 
						
							| 7 |  | dmres | ⊢ dom  ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  =  ( ( V  ∖  { 𝑋 } )  ∩  dom  𝐹 ) | 
						
							| 8 |  | inss1 | ⊢ ( ( V  ∖  { 𝑋 } )  ∩  dom  𝐹 )  ⊆  ( V  ∖  { 𝑋 } ) | 
						
							| 9 | 7 8 | eqsstri | ⊢ dom  ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  ⊆  ( V  ∖  { 𝑋 } ) | 
						
							| 10 | 9 | sseli | ⊢ ( 𝑋  ∈  dom  ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  →  𝑋  ∈  ( V  ∖  { 𝑋 } ) ) | 
						
							| 11 | 6 10 | mto | ⊢ ¬  𝑋  ∈  dom  ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  ¬  𝑋  ∈  dom  ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 13 |  | fsnunfv | ⊢ ( ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈  ∧  ¬  𝑋  ∈  dom  ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) ) )  →  ( ( ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ‘ 𝑋 )  =  𝑌 ) | 
						
							| 14 | 4 5 12 13 | syl3anc | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  ( ( ( 𝐹  ↾  ( V  ∖  { 𝑋 } ) )  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ‘ 𝑋 )  =  𝑌 ) | 
						
							| 15 | 3 14 | eqtrd | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑈 )  →  ( ( 𝐹  sSet  〈 𝑋 ,  𝑌 〉 ) ‘ 𝑋 )  =  𝑌 ) |