Metamath Proof Explorer
Description: The value of a singleton of an ordered pair is the second member.
(Contributed by NM, 12-Aug-1994) (Proof shortened by BJ, 25-Feb-2023)
|
|
Ref |
Expression |
|
Hypotheses |
fvsn.1 |
⊢ 𝐴 ∈ V |
|
|
fvsn.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
fvsn |
⊢ ( { 〈 𝐴 , 𝐵 〉 } ‘ 𝐴 ) = 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fvsn.1 |
⊢ 𝐴 ∈ V |
2 |
|
fvsn.2 |
⊢ 𝐵 ∈ V |
3 |
|
fvsng |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 〈 𝐴 , 𝐵 〉 } ‘ 𝐴 ) = 𝐵 ) |
4 |
1 2 3
|
mp2an |
⊢ ( { 〈 𝐴 , 𝐵 〉 } ‘ 𝐴 ) = 𝐵 |