Metamath Proof Explorer


Theorem fvsn

Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994) (Proof shortened by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsn.1 𝐴 ∈ V
fvsn.2 𝐵 ∈ V
Assertion fvsn ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵

Proof

Step Hyp Ref Expression
1 fvsn.1 𝐴 ∈ V
2 fvsn.2 𝐵 ∈ V
3 fvsng ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵 )
4 1 2 3 mp2an ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵