Metamath Proof Explorer


Theorem fvsng

Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012) (Proof shortened by BJ, 25-Feb-2023)

Ref Expression
Assertion fvsng ( ( 𝐴𝑉𝐵𝑊 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 funsng ( ( 𝐴𝑉𝐵𝑊 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ } )
2 opex 𝐴 , 𝐵 ⟩ ∈ V
3 2 snid 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ }
4 funopfv ( Fun { ⟨ 𝐴 , 𝐵 ⟩ } → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } → ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵 ) )
5 1 3 4 mpisyl ( ( 𝐴𝑉𝐵𝑊 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵 )