Metamath Proof Explorer


Theorem fvsnun1

Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsnun.1 ( 𝜑𝐴𝑉 )
fvsnun.2 ( 𝜑𝐵𝑊 )
fvsnun.3 𝐺 = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) )
Assertion fvsnun1 ( 𝜑 → ( 𝐺𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fvsnun.1 ( 𝜑𝐴𝑉 )
2 fvsnun.2 ( 𝜑𝐵𝑊 )
3 fvsnun.3 𝐺 = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) )
4 3 reseq1i ( 𝐺 ↾ { 𝐴 } ) = ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ { 𝐴 } )
5 resundir ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ { 𝐴 } ) = ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ { 𝐴 } ) )
6 incom ( ( 𝐶 ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) )
7 disjdif ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅
8 6 7 eqtri ( ( 𝐶 ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅
9 resdisj ( ( ( 𝐶 ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ { 𝐴 } ) = ∅ )
10 8 9 ax-mp ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ { 𝐴 } ) = ∅
11 10 uneq2i ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ { 𝐴 } ) ) = ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ∪ ∅ )
12 un0 ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ∪ ∅ ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } )
13 11 12 eqtri ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ { 𝐴 } ) ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } )
14 5 13 eqtri ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ { 𝐴 } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } )
15 4 14 eqtri ( 𝐺 ↾ { 𝐴 } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } )
16 15 fveq1i ( ( 𝐺 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ‘ 𝐴 )
17 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
18 1 17 syl ( 𝜑𝐴 ∈ { 𝐴 } )
19 18 fvresd ( 𝜑 → ( ( 𝐺 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐺𝐴 ) )
20 18 fvresd ( 𝜑 → ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) )
21 fvsng ( ( 𝐴𝑉𝐵𝑊 ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵 )
22 1 2 21 syl2anc ( 𝜑 → ( { ⟨ 𝐴 , 𝐵 ⟩ } ‘ 𝐴 ) = 𝐵 )
23 20 22 eqtrd ( 𝜑 → ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ { 𝐴 } ) ‘ 𝐴 ) = 𝐵 )
24 16 19 23 3eqtr3a ( 𝜑 → ( 𝐺𝐴 ) = 𝐵 )