Step |
Hyp |
Ref |
Expression |
1 |
|
fvsnun.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
fvsnun.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
fvsnun.3 |
⊢ 𝐺 = ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
4 |
|
fvsnun2.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ∖ { 𝐴 } ) ) |
5 |
3
|
reseq1i |
⊢ ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
7 |
|
resundir |
⊢ ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ) |
9 |
|
disjdif |
⊢ ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ |
10 |
|
fnsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 𝐴 , 𝐵 〉 } Fn { 𝐴 } ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝐴 , 𝐵 〉 } Fn { 𝐴 } ) |
12 |
|
fnresdisj |
⊢ ( { 〈 𝐴 , 𝐵 〉 } Fn { 𝐴 } → ( ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ↔ ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ↔ ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ) ) |
14 |
9 13
|
mpbii |
⊢ ( 𝜑 → ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ) |
15 |
|
residm |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
17 |
14 16
|
uneq12d |
⊢ ( 𝜑 → ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( ∅ ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ) |
18 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( ∅ ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) ) |
20 |
|
un0 |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
22 |
17 19 21
|
3eqtrd |
⊢ ( 𝜑 → ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
23 |
6 8 22
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
24 |
23
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) ) |
25 |
4
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( 𝐺 ‘ 𝐷 ) ) |
26 |
4
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
27 |
24 25 26
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |