Metamath Proof Explorer


Theorem fvtp1g

Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fvtp1g ( ( ( 𝐴𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐴𝐶 ) ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐴 ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 df-tp { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } )
2 1 fveq1i ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐴 ) = ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 )
3 necom ( 𝐴𝐶𝐶𝐴 )
4 fvunsn ( 𝐶𝐴 → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) )
5 3 4 sylbi ( 𝐴𝐶 → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) )
6 5 ad2antll ( ( ( 𝐴𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐴𝐶 ) ) → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) )
7 fvpr1g ( ( 𝐴𝑉𝐷𝑊𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) = 𝐷 )
8 7 3expa ( ( ( 𝐴𝑉𝐷𝑊 ) ∧ 𝐴𝐵 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) = 𝐷 )
9 8 adantrr ( ( ( 𝐴𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐴𝐶 ) ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) = 𝐷 )
10 6 9 eqtrd ( ( ( 𝐴𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐴𝐶 ) ) → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = 𝐷 )
11 2 10 eqtrid ( ( ( 𝐴𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐴𝐶 ) ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐴 ) = 𝐷 )