Metamath Proof Explorer


Theorem fvtp2

Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses fvtp2.1 𝐵 ∈ V
fvtp2.4 𝐸 ∈ V
Assertion fvtp2 ( ( 𝐴𝐵𝐵𝐶 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐵 ) = 𝐸 )

Proof

Step Hyp Ref Expression
1 fvtp2.1 𝐵 ∈ V
2 fvtp2.4 𝐸 ∈ V
3 tprot { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } = { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ }
4 3 fveq1i ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐵 ) = ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐵 )
5 necom ( 𝐴𝐵𝐵𝐴 )
6 1 2 fvtp1 ( ( 𝐵𝐶𝐵𝐴 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐸 )
7 6 ancoms ( ( 𝐵𝐴𝐵𝐶 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐸 )
8 5 7 sylanb ( ( 𝐴𝐵𝐵𝐶 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐵 ) = 𝐸 )
9 4 8 eqtrid ( ( 𝐴𝐵𝐵𝐶 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐵 ) = 𝐸 )