Metamath Proof Explorer


Theorem fvtp3

Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses fvtp3.1 𝐶 ∈ V
fvtp3.4 𝐹 ∈ V
Assertion fvtp3 ( ( 𝐴𝐶𝐵𝐶 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐶 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 fvtp3.1 𝐶 ∈ V
2 fvtp3.4 𝐹 ∈ V
3 tprot { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } = { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ }
4 3 fveq1i ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐶 ) = ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 )
5 necom ( 𝐴𝐶𝐶𝐴 )
6 1 2 fvtp2 ( ( 𝐵𝐶𝐶𝐴 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 )
7 5 6 sylan2b ( ( 𝐵𝐶𝐴𝐶 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 )
8 7 ancoms ( ( 𝐴𝐶𝐵𝐶 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 )
9 4 8 eqtrid ( ( 𝐴𝐶𝐵𝐶 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐶 ) = 𝐹 )