Metamath Proof Explorer


Theorem fvtp3g

Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fvtp3g ( ( ( 𝐶𝑉𝐹𝑊 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐶 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 tprot { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } = { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ }
2 1 fveq1i ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐶 ) = ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 )
3 necom ( 𝐴𝐶𝐶𝐴 )
4 fvtp2g ( ( ( 𝐶𝑉𝐹𝑊 ) ∧ ( 𝐵𝐶𝐶𝐴 ) ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 )
5 4 expcom ( ( 𝐵𝐶𝐶𝐴 ) → ( ( 𝐶𝑉𝐹𝑊 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 ) )
6 3 5 sylan2b ( ( 𝐵𝐶𝐴𝐶 ) → ( ( 𝐶𝑉𝐹𝑊 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 ) )
7 6 ancoms ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐶𝑉𝐹𝑊 ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 ) )
8 7 impcom ( ( ( 𝐶𝑉𝐹𝑊 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( { ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ , ⟨ 𝐴 , 𝐷 ⟩ } ‘ 𝐶 ) = 𝐹 )
9 2 8 syl5eq ( ( ( 𝐶𝑉𝐹𝑊 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐶 ) = 𝐹 )