Metamath Proof Explorer


Theorem fvtresfn

Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fvtresfn.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝑥𝑉 ) )
Assertion fvtresfn ( 𝑋𝐵 → ( 𝐹𝑋 ) = ( 𝑋𝑉 ) )

Proof

Step Hyp Ref Expression
1 fvtresfn.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝑥𝑉 ) )
2 resexg ( 𝑋𝐵 → ( 𝑋𝑉 ) ∈ V )
3 reseq1 ( 𝑥 = 𝑋 → ( 𝑥𝑉 ) = ( 𝑋𝑉 ) )
4 3 1 fvmptg ( ( 𝑋𝐵 ∧ ( 𝑋𝑉 ) ∈ V ) → ( 𝐹𝑋 ) = ( 𝑋𝑉 ) )
5 2 4 mpdan ( 𝑋𝐵 → ( 𝐹𝑋 ) = ( 𝑋𝑉 ) )