| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funun | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  Fun  ( 𝐹  ∪  𝐺 ) ) | 
						
							| 2 |  | funfv | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ( ( 𝐹  ∪  𝐺 ) ‘ 𝐴 )  =  ∪  ( ( 𝐹  ∪  𝐺 )  “  { 𝐴 } ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ( 𝐹  ∪  𝐺 ) ‘ 𝐴 )  =  ∪  ( ( 𝐹  ∪  𝐺 )  “  { 𝐴 } ) ) | 
						
							| 4 |  | imaundir | ⊢ ( ( 𝐹  ∪  𝐺 )  “  { 𝐴 } )  =  ( ( 𝐹  “  { 𝐴 } )  ∪  ( 𝐺  “  { 𝐴 } ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ( 𝐹  ∪  𝐺 )  “  { 𝐴 } )  =  ( ( 𝐹  “  { 𝐴 } )  ∪  ( 𝐺  “  { 𝐴 } ) ) ) | 
						
							| 6 | 5 | unieqd | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ∪  ( ( 𝐹  ∪  𝐺 )  “  { 𝐴 } )  =  ∪  ( ( 𝐹  “  { 𝐴 } )  ∪  ( 𝐺  “  { 𝐴 } ) ) ) | 
						
							| 7 |  | uniun | ⊢ ∪  ( ( 𝐹  “  { 𝐴 } )  ∪  ( 𝐺  “  { 𝐴 } ) )  =  ( ∪  ( 𝐹  “  { 𝐴 } )  ∪  ∪  ( 𝐺  “  { 𝐴 } ) ) | 
						
							| 8 |  | funfv | ⊢ ( Fun  𝐹  →  ( 𝐹 ‘ 𝐴 )  =  ∪  ( 𝐹  “  { 𝐴 } ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( Fun  𝐹  →  ∪  ( 𝐹  “  { 𝐴 } )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 10 |  | funfv | ⊢ ( Fun  𝐺  →  ( 𝐺 ‘ 𝐴 )  =  ∪  ( 𝐺  “  { 𝐴 } ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( Fun  𝐺  →  ∪  ( 𝐺  “  { 𝐴 } )  =  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 12 | 9 11 | anim12i | ⊢ ( ( Fun  𝐹  ∧  Fun  𝐺 )  →  ( ∪  ( 𝐹  “  { 𝐴 } )  =  ( 𝐹 ‘ 𝐴 )  ∧  ∪  ( 𝐺  “  { 𝐴 } )  =  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∪  ( 𝐹  “  { 𝐴 } )  =  ( 𝐹 ‘ 𝐴 )  ∧  ∪  ( 𝐺  “  { 𝐴 } )  =  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 14 |  | uneq12 | ⊢ ( ( ∪  ( 𝐹  “  { 𝐴 } )  =  ( 𝐹 ‘ 𝐴 )  ∧  ∪  ( 𝐺  “  { 𝐴 } )  =  ( 𝐺 ‘ 𝐴 ) )  →  ( ∪  ( 𝐹  “  { 𝐴 } )  ∪  ∪  ( 𝐺  “  { 𝐴 } ) )  =  ( ( 𝐹 ‘ 𝐴 )  ∪  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ∪  ( 𝐹  “  { 𝐴 } )  ∪  ∪  ( 𝐺  “  { 𝐴 } ) )  =  ( ( 𝐹 ‘ 𝐴 )  ∪  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 16 | 7 15 | eqtrid | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ∪  ( ( 𝐹  “  { 𝐴 } )  ∪  ( 𝐺  “  { 𝐴 } ) )  =  ( ( 𝐹 ‘ 𝐴 )  ∪  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 17 | 3 6 16 | 3eqtrd | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ( 𝐹  ∪  𝐺 ) ‘ 𝐴 )  =  ( ( 𝐹 ‘ 𝐴 )  ∪  ( 𝐺 ‘ 𝐴 ) ) ) |