Step |
Hyp |
Ref |
Expression |
1 |
|
fvvolicof.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
2 |
|
fvvolicof.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
3 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
4 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
5 |
4
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom 𝐹 ) |
6 |
2 5
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ dom 𝐹 ) |
7 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( vol ∘ [,) ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
8 |
3 6 7
|
syl2anc |
⊢ ( 𝜑 → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( vol ∘ [,) ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
9 |
|
icof |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
10 |
|
ffun |
⊢ ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,) ) |
11 |
9 10
|
ax-mp |
⊢ Fun [,) |
12 |
11
|
a1i |
⊢ ( 𝜑 → Fun [,) ) |
13 |
1 2
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ℝ* × ℝ* ) ) |
14 |
9
|
fdmi |
⊢ dom [,) = ( ℝ* × ℝ* ) |
15 |
13 14
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ dom [,) ) |
16 |
|
fvco |
⊢ ( ( Fun [,) ∧ ( 𝐹 ‘ 𝑋 ) ∈ dom [,) ) → ( ( vol ∘ [,) ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( vol ‘ ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
17 |
12 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( vol ‘ ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
18 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) ) |
20 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( ℝ* × ℝ* ) → ( 𝐹 ‘ 𝑋 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) |
21 |
13 20
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) |
22 |
21
|
eqcomd |
⊢ ( 𝜑 → 〈 ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 = ( 𝐹 ‘ 𝑋 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) = ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
24 |
19 23
|
eqtr2d |
⊢ ( 𝜑 → ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( vol ‘ ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
26 |
8 17 25
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |